Tag Archives: laser spot
385nm 180mW Lab Laser System Operation Video
385nm semiconductor lasers are based on the photoelectric effect of semiconductor materials. They use electrical excitation to make electrons in semiconductors transition and release light energy, thereby generating lasers. Its working material is semiconductor material, which has the advantages of small size, light weight, high efficiency, and long life. By optimizing the design of the resonant cavity, the 385nm 180mw laser can provide a near-Gaussian distributed beam with concentrated energy and high beam quality. In the field of scientific research, 385nm semiconductor lasers can be used for experiments such as spectral analysis, laser holography, and cell sorting, providing precise light source support for researchers.
This 385nm 180mW semiconductor laser. There are three working modes of CW/TTL/Analog on the back of the power supply to choose from. Rotate the ‘Adjustor’ knob on the power supply to adjust the current and thus the laser output power. This is the free space output mode, customizable for fiber coupling.
We observe the 385nm spot on the black background plate.
385nm semiconductor lasers have the advantages of stable wavelength, adjustable output power, and high beam quality. They have broad application prospects in the fields of ultraviolet curing, scientific research experiments, and industrial applications.
532nm 5mW DPSS Laser Diode Module Video
The 532nm free optical path laser is a DPSS laser, and the spot mode is TEM00 mode. It adopts the APC working mode, which has the advantages of good spot mode and long-term working stability.
It is compact, strong and reliable, suitable for various industrial and scientific research purposes. Single longitudinal mode, can be used for interferometer. Let’s check it now.
This is a 532nm 5mW DPSS laser module. The operating voltage is DC 5V. The spot quality is very good, and the divergence angle is also very small. Beam Divergence is less than 1 mrad. We can customize the laser modules according to your requirements.
The spectrum of the 532nm laser module.
Newest! 760nm Laser + Power Supply Integrated Fiber Laser
What we brought this time was the 760 1500mW all-in-one fiber laser. The laser power supply and laser output part are integrated in one chassis. There is a PC/M button on the back of the laser, the default is ‘M’ mode, that is, manual mode. ‘PC’ mode is software control mode, users can add this function. The Modulation interface on the back is used to connect 0~10KHz modulation signal. When there is no signal input, it is CW continuous working mode. Let’s check it now.
The 760nm 1500mW fiber laser integrated machine is a laser device that integrates high power, high precision and high stability. It uses a 760nm wavelength laser light source with a maximum output power of up to 1500mW, which can meet the needs of various high-precision and high-demand industrial applications.
The test data of this 760nm fiber coupled laser.
Laser output power stability diagram.
Graph of laser power and operating current in M-mode.
Output power under software, in PC mode.
520nm 22W Lab Laser Fiber Output PC Control
This is 520nm high power green fiber laser system. This laser adds software control. Use RS232-USB to connect the laser and computer software.The laser output power can be adjusted by software. Using EasyHost software, you can also write your own programs to control the lower computer according to the communication protocol.
The output power is 22W laser, it is a high-power laser, we added a heat sink under the laser module. The heat sink is composed of aluminum sheets and 3 cooling fans. Its fiber is pluggable, here we choose a 1000μm fiber. Let’s check it now.
Software Operation:
Click ‘Open COM’, the software links the lower computer control circuit of the laser. When starting the software for the first time, set the maximum current first, and set a maximum current value according to the laser test report. If the current is too large, it is easy to burn out the laser chip. For each laser, the maximum current must be set first.
915nm 3W IR MM Fiber Coupled Laser System
Usually we often see visible lasers, but few people will test infrared invisible lasers. Today we tested a 915nm infrared laser and its output power of 3000mW. Then when it is coupled through the fiber, what is the output power of the fiber end? Let’s check it now.
The optical fiber can be customized. 100μm~1000μm fiber is optional, the coupling efficiency of different fibers will be somewhat different. The larger the core diameter, the higher the coupling efficiency, usually the coupling efficiency is 80%~90 percent. In addition, the fiber length and interface also can be customzied. Here is 1000μm, SMA interface fiber.
The output power of the laser is adjustable from 0 to 3000mW, which can be adjusted by the knob. It supports 3 working modes, CW/TTL/Analog, switch the working mode on the back of the laser power supply. In TTL/Analog modulation mode, an external modulation signal needs to be connected.
The 915nm laser is an infrared laser, invisible light, we use an infrared sensitive film to observe. Faint light spots can also be photographed with a camera.
772nm Fiber Laser CW Working Mode Operation Video
What we are going to demonstrate in today’s video is a 772nm 1W fiber coupled laser. The output power of the laser is adjustable from 0 to 1000mW, which can be adjusted by the knob. It supports 3 working modes, CW/TTL/Analog, switch the working mode on the back of the laser power supply. In TTL/Analog modulation mode, an external modulation signal needs to be connected.
The optical fiber is pluggable and customizable. The fiber core diameter,fiber length and interface can be customized according to customer needs. 100μm to 1000μm fiber is optional, the coupling efficiency of different fibers will be somewhat different. The larger the core diameter, the higher the coupling efficiency, usually the coupling efficiency is 80%~90%.
The 772nm laser is a near-infrared laser, and the light spot is dim.
690nm SM TEM00 Laser Operation Video
Today we’re going to talk about a single-mode red laser — 690nm 30mW TEM00 laser. Its output power can be adjusted from 0 to 30mW. The working voltage is AC 90~240V, supports wide range voltage. It support CW/Modulation two working modes. This is a single transverse film laser. Let’s check it now.
The test data report of 690nm 30mW semiconductor laser:
1030nm 30dBm 1W SM Fiber Laser Source Benchtop
This laser adopts all-fiber laser technology, professionally designed and driven temperature control circuit and control to ensure the safe operation of the laser and stable laser output power and spectrum. It is suitable as a seed laser for higher power laser systems, and can also be used for production testing of optical fiber devices. It can be provided in benchtop or modular packaging.
It is a single-mode fiber copuled laser at 1030nm 1000mW. The laser output power is adjustable from 100mW~1000mW, and the adjustment accuracy is 1mW. It can be adjusted by buttons. Customizable software control function, connect with computer via RS232-USB. Configured with single-mode fiber Hi1060, and can also customize polarization-maintaining fiber output.
1030nm is invisible light, we use infrared photosensitive film to observe the light spot.
The Test Data Sheet & Spectrum at 1030nm, spectral bandwidth <0.2nm.