Monthly Archives: July 2024
532nm 5mW DPSS Laser Diode Module Video
The 532nm free optical path laser is a DPSS laser, and the spot mode is TEM00 mode. It adopts the APC working mode, which has the advantages of good spot mode and long-term working stability.
It is compact, strong and reliable, suitable for various industrial and scientific research purposes. Single longitudinal mode, can be used for interferometer. Let’s check it now.
This is a 532nm 5mW DPSS laser module. The operating voltage is DC 5V. The spot quality is very good, and the divergence angle is also very small. Beam Divergence is less than 1 mrad. We can customize the laser modules according to your requirements.
The spectrum of the 532nm laser module.
Circle with Point Laser Diode Module
In today’s rapidly changing science and technology, circular laser module, as an efficient and accurate positioning and identification tool, is gradually showing its unique charm and value in various fields. This article will deeply explore this cutting-edge technology from the aspects of the definition, working principle, application field and future development trend of circular laser module.
Today’s module is quite special. It is not the common circle. Its pattern is a perfect circle with a center point. Let’s check it now.
The head of the laser module can be rotated to adjust the focal length and change the thickness of the laser light. The built-in special lens makes the laser light appear in a circular shape. The power supply has an adjustment knob, which can adjust the voltage to change the laser output power and the brightness of the laser.
You can customize the circular laser of red/green/blue light. The divergence angle used here is 56°, and there is an option of 34°. There is a dot in the center here, or you can customize the center without a dot.
The circular spot at different distances.
Unlocking High-speed Transmission: In-depth Analysis of 40dBm Single-mode YDFA Technology
Ytterbium-doped fiber amplifier (YDFA) generates gain by pumping ytterbium-doped fiber with semiconductor laser and is used to amplify optical signals in the 1030~1080nm band. The output power is continuously adjustable and has the advantages of high gain and low noise. The desktop YDFA is convenient for experimental operation, and the user can adjust the pump current and output power through the panel buttons. A more compact modular YDFA is also provided to facilitate user system integration.
With the rapid development of optical communication technology, how to effectively enhance the intensity of optical signals and extend the transmission distance has become the focus of the industry. As an important technological innovation in this field, the ytterbium-doped fiber amplifier is gradually becoming a key device in the construction of optical communication networks with its excellent performance and broad application prospects.
The 40dBm ytterbium-doped fiber amplifier uses advanced ytterbium-doped fiber as the gain medium. Ytterbium is widely used in fiber amplifiers due to its unique energy level structure and efficient energy conversion characteristics. When pump light (usually high-power laser) is injected into ytterbium-doped fiber, ytterbium atoms absorb the energy of the pump light and undergo energy level transitions. Subsequently, when the optical signal passes through the fiber, the ytterbium atoms are stimulated to radiate photons of the same frequency as the signal light, thereby amplifying the optical signal.
It is a 1030~1070nm Ytterbium-doped fiber amplifier. The saturated output power is 40dBm @0dBm input. The 40dBm YDFA is a high-power amplifier, with an additional Monitor interface. The Monitor is used to monitor or synchronize signals with low power. And it has built-in cooling fan. Configured with RS2323 interface, available software or control command YDFA.
It supports two working modes of APC/ACC, and the two working modes can be switched by pressing the button. In APC working mode, the output power can be set. In ACC working mode, the working current can be set. Finally, press the middle square button to confirm.
The use of single-mode optical fiber as the transmission medium ensures high-quality transmission of optical signals. Single-mode optical fiber has small intermodal dispersion and is suitable for long-distance, high-speed optical communication applications.
The test data of YDFA-40-SM-B.
The 40dBm ytterbium-doped fiber amplifier has shown strong competitiveness and broad market space in the field of optical communication with its excellent performance and wide application prospects. With the continuous advancement of technology and the continuous growth of application demand, it is believed that this technology will play a more important role in the future and promote the rapid development of the optical communication industry.